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Abstract
We considered the system of two oppositely charged surfaces in a solution
composed of dipoles and monovalent ions. The functional density theory for
dipoles of arbitrary length was introduced. The spatial distribution of electric
charge within the dipoles, the orientations of dipoles and their restrictions near
the charged surface were taken into account. The result of the variational
procedure gave the nonlinear integro-differential equation for the electrostatic
potential. It was numerically solved by restating it as a fixed-point equation
in an infinite-dimensional space of functions and then by looking for an
approximated solution in the finite-dimensional space of functions defined
in a mesh of Chebyshev nodes. The numerical solution showed that the dipoles
are predominantly oriented parallel to the electric field, i.e. perpendicular to
the charged surfaces. The interaction between oppositely charged surfaces
mediated by dipoles was discussed.

PACS numbers: 41.20.Cv, 46.70.Hg, 82.45.Un

1. Introduction

Biological structures are normally composed of a large number of charged groups.
Biopolymers (DNA, polyelectrolytes, polystyrene sulfonate), membranes, cellular
components or globular proteins behave electrically as sets of point charges at fixed positions
on the molecules [1–3]. Normally, these structures are inserted in the biological medium
where besides the water molecules the free ions are also present. The ions can be counterions,
which are attracted by charged objects of opposite sign, or coions, which are depleted by the
charged objects of the same sign [4]. Therefore, the electrostatic interactions between charged
objects in soft and biological matter play an important role; they can be both attractive and
repulsive.
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The biological processes may take place between surfaces that are not equally charged
and even oppositely charged [5, 6]. Such situations have recently been studied in protein
association with DNA and membranes [7], the interaction between cationic liposomes and
negatively charged cell membranes [7, 8] and DNA association with artificial cationic
liposomes [9, 10]. In these situations macroions are charged surfaces of membranes, DNA
and proteins.

Many molecules are dipoles due to non-uniform distribution of positive and negative
charges on the various atoms. Dipoles are characterized by their dipole moment, a vector
quantity with the magnitude equal to the product of the positive charge and the distance
separating the two charges of the dipole [11]. A novel method was developed for the
preparation of the colloid particles with dipolar charge distribution [12, 13]. The peptide
chains can be organized into α-helices or β-sheets which also possess dipole moment [14–16].
In these structures, the vector summation of all constituent dipole moments can lead into a
large total dipole moment.

Recently, the electrostatic interactions between strongly charged objects (macroions) in
aqueous solutions pay large interest. The first approach to describe such systems is the mean-
field Poisson–Boltzmann (PB) theory [17, 18], where the particles in the solution are treated as
dimensionless, the correlations between the particles are not taken into account, the solution is
accounted for by the dielectric constant and the surfaces of macroions are uniformly charged.
Approaches were proposed where the correlations between the particles are incorporated:
integral-equation theories [19, 20], perturbative expansions around the mean-field PB theory
[21, 22] and local density functional theories [23]. The finite size of ions was taken into
account [24–26]. A spatially distributed charge within multivalent ions was considered [27].
To check the theoretical results, the Monte Carlo simulations have been performed [28–30].

The orientation of dipoles near the charged surfaces has also been studied. Lamperski
et al [31] used the improved PB theory for mixture of hard spheres with either point electric
charges or point electric dipole moments embedded at their centers. Monte Carlo and molecular
dynamics simulations [32, 33] have been performed to characterize the structure of dipoles at
charged surfaces.

In this work, we developed a density functional theory for the case of arbitrary long dipoles
sandwiched between two oppositely charged surfaces. In the solution we added also positive
and negative monovalent ions. The internal structure of each dipole is accounted for and the
intra-dipole correlations are taken into account. Our description of the charge distribution
within a single dipole goes beyond the standard approach of macroscopic electromagnetism.
We did not use Taylor expansion to describe the average charge density within a single dipole;
in contrast we have used the exact expression for the charge density within a single dipole.

In the following sections, we first derive a theory that considers the charge distribution of
individual dipoles and monovalent ions. The positional and orientational degrees of freedom
for rod-like dipoles are taken into account. The restriction of dipole orientations near the hard
charged walls is taken into account. The water molecules in the solution are accounted for
by the dielectric constant. The equation for electrostatic potential is the integro-differential
equation, which was solved numerically. In section 3, the novel numerical method is described,
which approach consists of the discretization of an infinite-dimensional space of functions into
a finite-dimensional space, reducing the integro-differential equation to a system of nonlinear
algebraic equations. The solution of the system by an iterative numerical method requires,
at every step of iteration, the solution of a boundary value problem of ordinary differential
equation. In section 4, we present the results of the numerical calculations, i.e. the profile
of electrostatic potential, the profile of electric field strength, the profile of volume charge
density, the spatial distribution of monovalent ions, the spatial distribution of the reference
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Figure 1. Schematic presentation of two oppositely-charged planar surfaces, which is filled with
water containing dipoles with dipole moment Ze0l and monovalent positive and negative ions.
The separation between the individual charges of each dipole is denoted by l. The valency of each
charge of the dipole is Z.

charges of dipoles and their orientations within the solution. In the last section, the influence
of dipoles on the interaction between oppositely charged surfaces is discussed.

2. Theory

In this work, we formulate the density functional theory for an aqueous solution containing
dipoles and monovalent ions. The dipoles have internal structure, each dipole is composed of
negative and positive elementary charges of valency Z, separated by a distance l, i.e. the dipole
moment of each dipole is Ze0l, where e0 is the elementary charge. The solution is sandwiched
between the two large planar, oppositely charged surfaces (figure 1). Each surface bears an
absolute value of surface charge density σ. The distance between the two surfaces is D.

We assume that there is no electric field behind the charged plates. The electrostatic
field varies only in the normal direction between the two plates (x-direction). The dipoles are
characterized by the positional and the orientational degrees of freedom while the monovalent
ions are characterized only by the positional degree of freedom. We describe the dipole by
referring to the positive charge as a reference charge, denoting the local concentration of all the
reference charges by n(x). The location of the negative charge of a given dipole is specified by
the conditional probability density p(s|x), denoting the probability to find the negative charge
at position (x + s) if the positive is at x. At any given position x, we require the normalization
condition 1

2l

∫ l

−l
dsp(s|x) = 1 to be fulfilled. Note also that p(s|x) = 0 for |s| > l.

The free energy of the system per unit area of the plate A and the thermal energy kT is
composed of the energy stored in the electrostatic field, the translational and the orientational
entropy of the dipoles as well as the translational entropy of the monovalent ions,

F

AkT
= 1

8πlB

∫ D

0
dx � ′(x)2 +

∫ D

0
dx[n(x) ln v0n(x) − n(x)]

+
∫ D

0
dx n(x)

1

2l

∫ l

−l

ds p(s|x)[ln p(s|x) + U(x, s)]
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+
∫ D

0
dx n(x)λ(x)

[
1

2l

∫ l

−l

ds p(s|x) − 1

]
+ µ

∫ D

0
dx

[
n(x) − N

AD

]

+
∫ D

0
dx

∑
i={+,−}

[
ni(x) ln

ni(x)

n0s

− (ni(x) − n0s)

]
, (1)

where � = e0φ

kT
is the reduced electrostatic potential, φ is the electrostatic potential, µ is the

reduced chemical potential, v0 is the volume of the dipole, lB = e2
0

/
4πεε0kT is the Bjerrum

length, ε is the dielectric constant of water, ε0 is the influence constant, k is the Boltzmann
constant, T is the absolute temperature, N is the number of dipoles, ni is the concentration
of the monovalent ions of the ith type and n0s is the bulk concentration of monovalent ions.
The sum in equation (1) runs over positive ‘i = +’ and negative ‘i = −’ monovalent ions.
The Lagrange parameter λ ensures the normalization condition for the conditional probability
density. The fifth term in equation (1) ensures the constant number of dipoles in the solution.
We introduce the external reduced potential of the charged wall

U(x, s) =
{

0, x > 0 and x + s > 0 and x < D and D − x − s > 0
∞, elsewhere,

which ensures that the dipoles could not penetrate through the charged wall.
In thermal equilibrium, the free energy F = F [n(x), p(s|x), ni(x)] is minimal with

respect to the functions n(x), p(s|x) and ni(x). The variational procedure (δF = 0) gives the
local concentration of monovalent ions

ni(x) = n0s e−i�(x), (2)

the conditional probability density

p(s|x) = e−U(x,s)+Z�(x+s)

q(x)
(3)

and the local concentration of reference charges of dipoles

n(x) = n0 e−Z�(x)q(x), (4)

where n0 = 1
v0

e−µ is the concentration of reference charges at vanishing electrostatic (� = 0)

and external (U = 0) potentials, and

q(x) = 1

2l

∫ l

−l

ds e−U(x,s)+Z�(x+s) (5)

is the orientational partition function of a single dipole with the position of its reference charge
at x. In equation (4), the term e−Z�(x) corresponds to the Boltzmann distribution for the
concentration of the reference charges of dipoles.

The local charge density has contributions from positive reference charges that are
located at x and from the orientational mobile negative charges, located at (x − s) with
the corresponding probability density p(s|x − s) as well as from the positive and negative
charges of monovalent ions. Inserting the local charge density

ρ(x)

e0
= Zn(x) − Z

1

2l

∫ l

−l

ds n(x − s)p(s|x − s) +
∑

i={+,−}
ini(x) (6)

into the Poisson equation � ′′(x) = −4πlB
ρ(x)

e0
, we obtain the integro-differential equation for

the reduced electrostatic potential

� ′′(x) = 8πlBZn0
1

2l

∫ min[l,D−x]

max[−l,−x]
ds sinh[Z�(x) − Z�(x + s)] + 8πlBn0s sinh[�(x)]. (7)
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The boundary conditions are given at the charged plates

� ′(x = 0) = −σ
4πlB

e0
, (8)

� ′(x = D) = −σ
4πlB

e0
. (9)

These boundary conditions demand a neutral overall charge for the system [34].
In the case of the solution composed of only monovalent ions (n0 = 0, the dipoles are not

present) the integro-differential equation (7) reduces to the well-known PB equation for the
monovalent salt of ions � ′′(x) = 8πlBn0s sinh[�(x)].

If the electrostatic potential is small compared to the thermal energy (� � 1) then in
equation (7) we can linearize the term sinh[Z�(x) − Z�(x + s)] to Z�(x) − Z�(x + s) and
the term sinh [�(x)] to �(x). The linearized integro-differential equation is

� ′′(x) = 8πlBZn0
1

2l

∫ min[l,D−x]

max[−l,−x]
ds[Z�(x) − Z�(x + s)] + 8πlBn0s�(x). (10)

with the same boundary conditions (8) and (9).

3. Numerical method

The analytical solution of the integro-differential equation (7) with boundary conditions (8)
and (9) is not available. A numerical solution is obtained in the following way. The integro-
differential boundary value problem is restated as a fixed-point equation

� = F(�), (11)

where F(�) is the solution � of the ordinary differential boundary value problem

�′′(x) = 8πlBZn0
1

2l

∫ min[l,D−x]

max[−l,−x]
ds sinh[Z�(x) − Z�(x + s)] + 8πlBn0s sinh[�(x)],

(12a)

�′(x = 0) = −σ
4πlB

e0
, (12b)

�′(x = D) = −σ
4πlB

e0
. (12c)

The fixed-point equation (11) is then discretized by replacing the domain [0,D] of
equation (7) by a mesh of N Chebyshev nodes, the function � by an N-dimensional vector �N

of values at the mesh nodes and equation (11) by the finite-dimensional algebraic equation

�N = πN(F(pN(�N))), (13)

where pN(�N) is the polynomial interpolating the values in the vector �N at the mesh nodes
and πN(�) is the N-dimensional vector of the values of the function � at the mesh points.

For the numerical computation we use MATLAB software. The discretized fixed-point
equation (13) is rewritten as

G(�N) = �N − πN(F(pN(�N))) = 0 (14)

and then solved by the ‘fsolve’ MATLAB function (present in the optimization toolbox), which
finds solutions of nonlinear algebraic equations by a least-squares method.
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Figure 2. Linearized theory. Salt of monovalent ions is not present. (A) Reduced electrostatic
potential �(x) and electric field strength E(x) (in inset), (B) local concentration of reference
charges n(x) and (C) charge density ρ(x) as a function of the distance from the left charged plate
x. The lengths of dipoles l = 5 nm (a), l = 2 nm (b) and l = 0.1 nm (c) are shown. The volume of
dipole is v0 = la0. The model parameters are D = 10 nm, a0 = 1 nm2, σ = 0.005 As m−2, Z =
1, ε = 78, T = 300 K and N = 25 for A = 100 nm2.

The function ‘fsolve’ requires the computation of values of G, and so it requires the solution
of the second-order ordinary boundary value problems of equation (12). Such problems are
restated as first-order equations and then solved by the ‘bvp4c’ MATLAB function, which
finds the solution of two-point ordinary boundary value problems by collocation. Finally, the
integral in equation (12a) is computed by the ‘quad’ MATLAB function.

4. Results

Figure 2(A) shows the reduced electrostatic potential � and the electric field strength E (in the
inset) as a function of the distance from the left charged plate x between two oppositely charged
plates for three different lengths of dipoles. The electrostatic potential � monotonously
increases with increasing distance from the left charged surface. The electric field strength E
is symmetric with respect to the midplane of the system. In the limit of very small dipoles the
electrostatic potential reduces to the electrostatic potential of the condenser filled with water,
the electric field strength becomes constant E0 = −7.1 × 106 V m−1. The difference between
the field strength and the constant value E0 increases with increasing lengths of dipoles.

Figure 2(B) shows the concentration of reference charges n and figure 2(C) shows the
charge density ρ as a function of the distance from the left charged plate x between two equally
charged plates for three different lengths of dipoles. The concentration of reference charges
n first increases, reaches maximum value and then decreases with increasing x. In the limit
l = 0 the concentration n has a constant value. The local concentration of reference charges
n(x) is not smooth (figure 2(B)). The first derivative of n(x) is discontinuous at x = l and
x = D − l. In the regions 0 < x < l and D − l < x < D the orientational restriction of
dipoles is present. In the region l < x < D − l the orientational restriction of dipoles is not
present. For longer dipoles l the absolute value of charge density ρ decreases with increasing
distance from the left charged surface. For smaller l the absolute value of charge density ρ first
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Figure 3. Comparison between the nonlinearized (full lines) and the linearized (dashed lines)
theories. Salt of monovalent ions is not present. (A) Reduced electrostatic potential �, (B) local
concentration of reference charges n and (C) charge density ρ as a function of the distance from
the left charged plate x for two different lengths of dipoles l = 5 nm (a, c) and l = 2 nm (b, d).
The volume of each dipole is v0 = la0. The model parameters are D = 10 nm, a0 = 1 nm2 and
σ = 0.02 As m−2, Z = 1, ε = 78, T = 300 K and N = 25 for A = 100 nm2.

increases, reaches a maximum and then decreases with increasing distance to the zero value in
the center of the system. In the limit of very small dipoles the charge density vanishes.

The comparison between the nonlinearized and the linearized theories is shown in
figure 3 for the surface charge density σ = 0.02 As m−2. The absolute value of the potential
obtained with the linearized theory is larger than the absolute value of the potential obtained
with the nonlinearized theory (figure 3(A)). This difference increases with increasing l. Near
the charged surfaces the concentration of reference charges obtained within the nonlinearized
model is larger than the concentration calculated within the linearized theory (figure 3(B)).
There is a tiny difference between the nonlinearized and linearized theories for l = 2 nm (see
curves (b) and (d) in figure 3(B)). This difference increases with increasing l. In the region
0 < x < 5 nm the charge density of the nonlinearized theory is larger than the charge density
of the linearized theory, while in the region 5 nm < x < 10 nm opposite behavior is obtained
(figure 3(C)).

The presence of the monovalent salt in the solution has an influence on the radial
distribution of dipoles near the charged surfaces. Figure 4 shows (A) the reduced electrostatic
potential �, (B, C) the concentration of reference charges of dipoles n and the concentration
of negative monovalent ions n− as a function of the distance from the left charged plate x
between two oppositely charged plates for three different bulk salt concentrations. We see
that the presence of monovalent salt decreases the absolute value of the potential. This effect
is pronounced for increasing bulk concentration of monovalent counterions and coions. The
presence of the salt monovalent ions also has an influence on the concentration of reference
charges of dipoles. With increasing bulk value n0s of monovalent salt the concentration of
reference charges of dipoles n near the negatively charged surfaces decreases, while near the
positively charged surfaces the concentration n increases. In the mid-plane of the system there
is a tiny influence of n0s on the concentration of reference charges n(x). For larger n0s the
result of the PB theory for monovalent salt (without dipoles) is reached (figure 4(C)).



11822 S Maset and K Bohinc

0 5 10

0

2.5

2.5

5

5

(b)

(a)

x [nm]

Ψ
(x

)

0 5 10
0

0.05

0.1

(d)

(e)

(f)

n
(x

)

0 5 10
0

0.1

0.2

(f )

(e)

(c)

x [nm]

(A) (B)

(C )

Figure 4. Nonlinearized theory, salt of monovalent ions included. (A) Reduced electrostatic
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are given for n0s = 0. The lengths of dipoles is l = 2 nm. The volume of dipole is v0 = la0. The
model parameters are D = 10 nm, a0 = 1 nm2, σ = 0.02 As m−2, Z = 1, ε = 78, T = 300 K
and N = 25 for A = 100 nm2.
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Figure 5. Conditional probability density as a function of the projection of the dipoles with respect
to the axis x for four different coordinates of the reference charge (A) x = 0, (B) x = 1 nm,
(C) x = 5 nm and (D) x = 10 nm. The surface charge densities are σ = 0.005 As m−2 (full lines)
and σ = 0.02 As m−2 (dashed lines). The volume of dipole is v0 = la0. The nonlinear theory is
used. The model parameters are l = 2 nm, D = 10 nm, a0 = 1 nm2 and Z = 1 and N = 25 for
A = 100 nm2.

Figure 5 shows the conditional probability density p(s|x) as a function of the projection
s of dipoles to the x direction. Two different surface charge densities are given for the dipoles
of length l = 2 nm. We use the nonlinearized modified PB theory. The calculation is made
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for reference charges located at coordinates x = 0, x = 1 nm, x = 5 nm and x = 10 nm. In
the interval 0 < x < 2 nm the conditional probability densities are defined only in the interval
−x < s < l, while in the interval 8 nm < x < 10 nm the conditional probability densities are
defined in the interval −l < s < D − x. The conditional probability density increases with
increasing s. For x = 0, x = 1 nm and x = 5 nm the conditional probability density reaches
its maximum at s = +l, while for x = 10 nm the conditional probability density reaches its
maximum at s = D − x.

5. Discussion

In summary, we considered two charged surfaces of opposite sign which are filled with
aqueous solution of dipoles and monovalent ions. For such a system we introduced the density
functional theory which enables us to study the spatial and the orientational distributions of
dipoles. We showed that the dipoles tend to be oriented parallel to the electric field.

First, we discuss the concentration profile of reference charges of dipoles and the volume
charge density. For small dipoles, the concentration of reference charges (positive charges) of
dipoles close to the charged surfaces is small (figure 2(B)). The decrease of concentration n
close to the charged surfaces compared to n in the center of the system can be attributed to the
finite dimension of dipoles in a small region in the vicinity of the charged surfaces. Namely,
the charged surfaces restrict the orientations of the dipoles leading to decreased concentration
n close to the charged surfaces. On contrary, the dipoles with reference charges in the midplane
can take all possible orientations. This is the reason why the concentration n in the midplane
of the system is larger than the concentration n near the charged surfaces. The decrease in
the concentration of reference charges near the charged surfaces is nonsymmetric. The
concentration of reference charges is larger close to the negatively charged surface compared
to the positively charged surface. The reason is the attraction (repulsion) between the negatively
(positively) charged surfaces and the reference charges of dipoles. This means that the volume
charge density near the negatively charged surface takes positive values, while the volume
charge density near the positively charged surface takes negative values (figure 2(C)). The
charge density is antisymmetric with respect to the midplane of the system indicating that
both walls restrict the orientation of the dipoles in the same way. The volume charge density
characterizes the total probability to find the dipoles with reference charges positioned at x.
In the center, the positive and negative charges of dipoles are present with equal probabilities
and the charge density is zero.

We also discuss the conditional probability density (figure 5). We showed that the dipoles
prefer to be oriented perpendicular to the charged surface, i.e. the dipoles orient parallel
to the electric field. This preference of the orientations is enhanced by increasing surface
charge density. Namely, the increasing surface charge density increases their electrostatic
interaction with the charges of the dipoles. Let us note that if we force the positive reference
charges to sit at the positive charged surface then the dipoles are oriented parallel to the
charged surface (figure 5(D)). These situations happen very rarely and can be excluded in
the discussion, because the concentration of reference charges near the positively charged
surface is negligible.

Here, we introduce two examples which indicate that the orientation of dipoles is
influenced by the electric field of the charged surface. It was shown that the orientation
of the IgG protein near the charged sorbent surface can be strongly influenced by electrostatic
interactions [35, 36]. The orientation of polarized ions around the DNA molecule was also
measured [37].
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The dipoles have influence on the electric field strength E in the solution (figure 2(A)).
The electric field strength varies with the distance from the surface and is perpendicular to
the charged surfaces. Near the charged surfaces there is a small influence of the dipole length
l on E, while in the center of the system there is a large influence of the dipole length l on
E. For a given l the electric filed strength E exhibits the largest variation with respect to the
x-axis close to the charged surfaces. This behavior was experimentally observed [38]. The
increasing lengths of dipoles decreases the absolute value of the electric field strength. In the
limit of very small dipoles the electric field strength is equal to the electric field strength of
the condenser E = − σ

εε0
[11].

In our case, the electric field of the system is produced by the charged surfaces and dipoles
in the solution. The dipoles possess the dipole moment. In the external electric field the dipoles
orient in the direction of the electric field in order to decrease the electric field between the
surfaces. This phenomenon lowers the electric field strength between the surfaces. Our
calculation shows that the dipoles are aligned along the electric field, because the conditional
probability density shows that the most probable orientation of dipoles corresponds to the
orientation parallel to the electric field strength. The degree of the alignment is determined by
the temperature and the surface charge density of the system. Also the steric restrictions near
the charged surface have influence on the dipole orientation.

We showed that the presence of the monovalent salt in the solution has an influence
on the distribution of dipoles. The positive monovalent ions are attracted by the negatively
charged surface and can be understood as the counterions for negatively charged surface (see
figures 4(B), (C)). Similarly, the negative monovalent ions are attracted by the positively
charged surfaces and can be understood as counterions for the positively charged surface (see
figures 4(B), (C)). With increasing salt concentration near the negatively (positively) charged
surface, the concentration of reference charges n(x) decreases (increases). This phenomenon
can be explained by the screening of charged surfaces via counterions. Namely, the positive
(negative) ions screen the negatively (positively) charged surface. The negatively charged
surface becomes less attractive for the reference charges of dipoles, while the positively
charged surface becomes more attractive for the reference charges. In the center of the
solution, the concentration of positive and negative ions is the same and influence of the salt
on the distribution n(x) is negligible. In the limit of very small concentration of dipoles the
potential profile converges to the usual PB equation for monovalent salt.

In our model we adopted some simplifications. We did not take into account the
correlations between dipoles in solution [20, 28, 39]. But the intra particle correlation within
one dipole has been accounted for by spatial separation of the charges within the dipole.
Also we did not take into account the correlations between the dimensionless monovalent
ions. Namely, the PB theory yields satisfactory agreement with the computer simulations for
solutions with monovalent counterions [18, 40]. We did not consider the partial adsorption of
dipoles on the charged plate [41, 42].

Our system is composed of two oppositely charged surfaces and the dipoles, which have
two oppositely signed charges. The overall charge of the system vanishes

∫ D

0 ρ(x) dxA = 0.

The two surfaces are electro-neutral and each dipole is electro neutral. Therefore the electro-
neutrality is guaranteed for any number of dipoles. The number of dipoles in the solution
is fixed through the constraint given in the fifth term of the free energy (equation (1)). We
consider the cube of surface area A = 100 nm2 and the distance between the charged surfaces
D = 10 nm which corresponds to the volume Vc = 1000 nm3. In this cube, we chose N = 25
dipoles. This means that each dipole with length l can approximately occupy 40 nm3. For the
given l the approximate volume can be obtained as vc = 4π(l/2)3

3 . This simple consideration
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limits the maximal lengths of dipoles to lc = 4 nm and substitutes the incorporation of the
steric effects in the theory.

Figures 2 and 3 also show the results for the dipoles of length l = 5 nm, which lies
on the border of the validity. The results for l = 5 nm indicate that too long dipoles could
create non-real values of concentrations and volume charge densities (see figures 2(B), (C)).
The volume charge density (figure 2(C)) for dipoles of l = 5 nm have a completely different
behavior as the volume charge density for the dipoles of length l = 2 nm.

The difference between the linearized and nonlinearized theories becomes important
for larger surface charge densities. We estimated that above the surface charge density
σ = 0.01 As m−2 the deviation of the linearized theory with respect to the nonlinearized
theory is observed. The linearized theory predicts a larger absolute value of the potential and
smaller concentrations of reference charges near the charged surface. These observations are
similar to the observations for monovalent ions [26].

Like any approximations, the PB theory and our density functional theory have limits of
validity. Under physiological conditions, electrolyte strength around 0.1 mol l−1, it describe
rather well the ionic distributions as long as the surface is not too highly charged [3, 18]. The
PB theory can be applied only to the objects if lB � a, where a is the typical radius of the
object.

In principle, our equation can be solved for given boundary conditions, which can be either
the Dirichlet boundary condition (the constant surface potential) or the Neumann boundary
condition (the constant surface charge density) [17, 18]. The two boundary conditions are
the limiting cases of the boundary condition where the fraction of the dissociated ionizable
surface groups is treated as a self-consistent functional of the electrostatic potential [43]. In
the majority of the biological relevant cases the surface density can be kept constant [3].
Therefore, in our calculation we used the Neumann boundary condition with fixed surface
charge density (equations (8), (9)).

The presence of the dipoles in the electrolytes solution has the influence on the interaction
between two oppositely charged surfaces. The force between the oppositely charged surfaces
is especially pronounced at the distance between the charged surface being equal to the lengths
of the dipoles, which is related to the bridging mechanism [44, 45].

In this paper, we considered the system of two oppositely charged planar surfaces in a
solution composed of dipoles of arbitrary length and monovalent ions. The variational theory
applied to the free energy of our system leads to the non-local integro-differential equation,
which is also interesting from the mathematical point of view. In fact, the equation is a
boundary value problem for an integro-differential equation, which has been considered for
the first time and it cannot be fitted in known theories. The obtained numerical results help
to understand the spatial and the orientational distributions of dipoles between two oppositely
charged surfaces.
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